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We study the long-time stability of oscillators driven by time-dependent forces 
originating from dynamical systems with varying degrees of randomness. The 
asymptotic energy growth is related to ergodic properties of the dynamical 
system: when the autocorrelation of the force decays sufficiently fast one 
typically obtains linear diffusive growth of the energy. For a system with good 
mixing properties we obtain a stronger result in the form of a central limit 
theorem. If the autocorrelation decays slowly or does not decay, the behavior 
can depend on subtle properties of the particular model. We study this 
dependence in detail for a family of quasiperiodic forces. The solution involves 
the analysis of a small-denominator problem that can be treated by fairly 
elementary methods. In the special case of a periodic force the quantum stability 
problem can be expressed in terms of spectral properties of the Floquet 
operator. In the presence of resonances the spectrum is absolutely continuous. 
We find explicitly the eigenvalues and eigenfunctions for the nonresonant case. 

KEY WORDS: Time dependent Hamiltonian; diffusive energy growth; quan- 
tum chaos; harmonic oscillator. 

1. I N T R O D U C T I O N  

A sys tem sub jec ted  to  ex te rna l  forces o v e r  which  it has l i t t le o r  no  inf luence 

is gene ra l ly  desc r ibed  by a t i m e - d e p e n d e n t  H a m i l t o n i a n  

H ( t )  = n o ( x )  + V(x ,  t) (1 . I )  
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where H 0 is the Hamiltonian of the isolated system. The effect of the 
perturbation V on the time evolution of the system wilt depend on many 
factors. For microscopic systems such as atoms or molecules, V can serve 
as an energy pump leading to ionization or dissociation. This can occur 
either due to strong resonances between the spectrum of V(t) and the 
natural frequencies of Ho, or to more subtle instabilities which lead to 
"chaotic behavior." Thus, the multiphoton ionization experiments on 
Rydberg atoms in a microwave field carried out by Bayfield and Koch ~ 
were explained by Leopold and Percival t2~ and others ~3~ in terms of chaotic 
dynamics. These analyses were initially done entirely classically. Their 
success spurred interest in the study of "quantum chaos," which for our 
purposes here will simply mean the unstable evolution of the system 
described by (1.1) when it is treated quantum mechanically. In addition to 
the ionization of Rydberg atoms there are a variety of other microscopic 
systems which involve Hamiltonians of the form (1.1). These include hms 
localized in a Paul or in a Penning trap, t4'5~ electrons attracted to a surface 
of liquid helium, ~6~ and charge transfer in atomic collisions. ~7~ Mesoscopic 
quantum devices, in which quantum coherence plays an essential role, such 
as small conducting rings threaded by time-dependent magnetic fluxes, ~8~ 
also fall within this category. 

The problem of stability may be formulated as follows: given a system 
initially in a state which is localized in "phase space," does the time 
evolution under (1.I) lead to delocalization? ~9) This would correspond in 
some cases, such as the kicked rotator, to an unbounded growth of the 
energy, and in others, such as the Rydberg atoms, to ionization. 

The case of time-periodic external force has been studied most exten- 
sively both for classical and quantum systems. The stability problem can 
then be expressed in terms of the properties of the Ftoquet operator 
U(t + T, t), which gives the evolution of the system over one period T. 
Classically, U is a canonical volume-preserving Poincar6 map in phase 
space, while quantum mechanically it is a unitary operator on the Hilbert 
space ~f of the unperturbed system. The long-time behavior of the system 
and its stability are determined by iteration of this map. Classically, the 
system can be studied by standard methods, including direct numerical 
simulation. It can exhibit varieties of behavior, ranging from integrable to 
chaotic, i.e., positive Lyapunov exponents. On the quantum mechanical 
side, the question of stability can be expressed in terms of the spectral 
properties of the Floquet operator. "~ ~3~ The energy remains bounded if 
the spectrum is pure point, and it grows unbounded ~f the spectrum is 
continuous. The quantum problem is considerably more difficult than the 
classical one, and one of the outstanding questions in the field is the 
existence of qualitatively different behavior of quantum and classical 
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systems. There are models, such as the kicked rotator, which classically 
show a linear growth of the energy while the quantum analogues have been 
found to saturate (quantum limitation of diffusion t14'xs)). 

There has been much progress in solving the time-periodic problem in 
some special cases. For Hamiltonians that are quadratic in p and q with 
time-periodic coefficients, the possible asymptotic behaviors have been 
completely classified, ~ and the spectrum was related to properties of the 
corresponding classical model. In particular, models describing ions in Paul 
or in Penning traps (involving parametrically driven quadratic potentials 
and 1/lxl 2 interactions ~4"5)) have been studied in detail. In addition, the 
spectrum of the Floquet operator has been proven to be pure point for the 
smoothly kicked rotator with small coupling, t~7) The quantized Fermi 
accelerator has been shown to have no absolutely continuous spectrum, t~8) 
Some general criteria for stability of the point spectrum have been 
developed in refs. 19 and 20. 

The stability problem is far less understood in the case of nonperiodic 
perturbations. A generalization of the Floquet theory connecting spectral 
and stability properties is not available (see, however, ref. 17, where 
a natural extension was proposed). Existing studies indicate that the 
quantum limitation of diffusion is weaker or absent for nonperiodic 
perturbations. This has been observed numerically for quasiperiodic 
perturbations of the kicked rotator, with two or three incommensurate 
frequenciesJ 2~ For the randomly kicked rotator, it has been shown that 
the energy grows unbounded. ~22~ A general class of randomly perturbed 
quantum systems in which the time dependence is given by a Markov 
process has been treated in detail in refs. 23 and 24. It appears from that 
analysis that quantum systems may be even more unstable than classical 
systems under such random perturbations. It has also been shown that an 
arbitrary small dissipation restores the diffusive behavior. ~'~ 

A natural framework for considering general time-dependent perturba- 
tions which includes both the periodic and the random potentials as special 
cases is to write (1.1) in the form 

H(t) = no(X) + V(x, r (1.2) 

where r e 12 is a trajectory of a classical dynamical syustem on a domain 
g2, with an invariant ergodic measure #. One considers then typical or 
averaged behavior with respect to #. The time evolution given by (1.2) can 
be thought of as a limiting case of the system being in contact with an 
external bath when the relevant state of the bath is described by (t, which 
is independent of the state of the system. In this language the periodic case 
corresponds to 12 being the circle with ~, = ~ + e)t, and d# = dr 
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In the present paper we investigate such general time dependence of 
H(t )  in the context of a harmonic oscillator subjected to an external force. 
The simplicity of the model, in which the classical and quantum behavior 
are similar, permits us to establish some general relations between the 
ergodic properties of the dynamical system 4, and the growth of the energy 
of the oscillator. We find that in general when the autoeorrelation of the 
force decays fast enough, the system behaves chaotically and the energy 
grows linearly. In fact we show more. Analyzing in detail an explicit exam- 
ple with good ergodic properties, we prove that the energy behaves like the 
square of a Gaussian random variable with variance proportional to time. 
We expect that this type of behavior occurs whenever ~, has a positive 
Lyapunov exponent. When the correlations do not decay rapidly, the situa- 
tion is more complicated. The study of some examples indicates that the 
asymptotic behavior depends on the fine details of the particular model. An 
interesting example with quasiperiodic correlation is analyzed in Section 4. 
We find that the asymptotic behavior depends crucially on the smoothness 
properties of the potential V(x, ~,). In Section 5 we discuss the relation 
between the classical and quantum systems and calculate explicitly the 
spectrum and eigenfunctions of the Floquet operator for the case of 
periodic forces. 

2. DESCRIPTION OF THE MODELS 

The system is described by the Hamiltonian 

H = � 8 9  l_ z_~ qF(~, ) (2.1) ~tOoq 

where ~, is a stationary process with a measure g, e.g., F(r 
A cos(~ot + ~o) with ~o uniformly distributed in [0, 2~]. In general 

<F(r = <F(~)>,, = 0 
(2.2) 

< r (~ , ) r ( r  <V(~, .,) F(r =- V ( [ t - s b )  

The time evolution of the position q, and momentum p, for the 
classical system can be written as 

v, - (q,, p, /wo) = Rtvo + R , z ( t )  (2.3) 

where 

_ ( cos COot sin O~ot" ~ 
R, (2.4) \ 

- sin COo t cos COo t j  " 
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and [writing F(t) instead of F(~,) 

2(t)=(Zl(t)~=( \~dt)/ \ 

to simplify the notation] 

- I~ dsF(s) lsinogoS 1 

I~ dsF(s)lc~176176 J 
(2.5) 

The growth of the energy is determined by the behavior of z(t). Using the 
Fourier representation 

f(t) = ~o o _ &o [~c(~o) cos cot + ~s(~o) sin ~ot] (2.6) 
oo 

(where F,., F, will in general be distributions), we can write 

(2.7) 

z2(t) = foo_. dr [F,.(og)sin(m~ m) t + m o _ ~ O  Fs(fn) 1 - c~176 ~~ t ] O g o - m  3 

From this representation one sees immediately that: 

(a) If Fc(to) or Ps(m) has a component ,-~3(m-mo), there is a 
resonance and z(t)~ t, i.e., the energy grows quadratically: E(t)~ 12. 

(b) If P,(~J~) and P,.(6~) are bounded in a neighborhood of "~o, then 
the energy stays bounded, since 

f ' ~ s i n O t  ,f[ sin0' 
, d ) - - -d - -=2  dO' 0 - -  ' .... , c o n s t < ~  (2.8) 

A nontriviai, e.g., linear, growth of the energy is only possible if P(~) 
satisfies neither (a) nor (b). This cannot happen if the force is periodic or 
quasiperiodic with a Fourier spectrum that is not dense. In such cases the 
energy is either bounded or grows quadratically. The point of our study is 
to analyze interesting examples of forces for which the energy grows 
linearly (or slower) in time--a behavior that is expected to be typical in 
realistic systems. 

We will study the time evolution of the energy of the oscillator 
averaged over the stationary process kt. It can be written as 

E'(qo, Po, t )=  ( E , ) ,  = p, +--~ q~ 
//  

=-~ qo+-~op~+(Iz(t)12), (2.9) 
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The quantity determining the asymptotic growth is thus (Iz(t)12)~,. Using 
the definition (2.5) and performing one integration (after a change into 
relative variables), it can be expressed as 

= f '  ~o~<lz,12),, d~(t-ls[)C(s)coseg,,s (2.I0) 

The asymptotic behavior of the averaged energy is thus determined by the 
correlation function of the force. In particular, if the correlation function 
decays sufficiently fast, C(t)=o(t 2 ,:), then generally the energy grows 
linearly in time (see Propositions 3.1 and 3.2). If, on the other hand, the 
correlation function decays more slowly (or does not decay at all), the 
behavior of the energy can depend on quite subtle details of the force and 
it is difficult to make general statements. We will discuss examples of both 
types of behavior in Sections 3 and 4. These examples involve piecewise 
constant forces that are constructed as follows. 

Piecewise Constant Forces 

Consider a discrete-time dynamical system on a domain M, defined by 
a map T and an invariant measure /~M' A stationary process ~, with 
continuous time can be constructed on the space f2 = M • [0, t ]  (where t 
is a constant) as a flow under a functionr The evolution of an initial 
point ~ = (~p, s)~12 starts by moving with fixed q~ and speed one from 
(q~, s) to (~p, t); then it jumps to (Top, 0) and the cycle is restarted. This 
evolution has an invariant measure dIa=dpM.dS/r. We now let F(r 
depend only on r i.e., we fix an initial time toe [0, t ] ,  an initial value 
~p ~ M, and an interval t, and define a piecewise constant force 

F(t)=f(Tk~p) for to+kz<.t<to+(k+l)t,  k = 0 , 1 , 2  .... (2.11) 

o r  

F(t) =- ~ Xtk*,~k+ ~),)(t-- to)f(Tkq~) (2.12) 
k = O  

where Xt,,.,2~ is the characteristic function of the interval [ t l ,  t2) and 
f e  L2(M, dpM) satisfying SM f(~P) d/~M = 0. 

In our two examples, M is taken to be the circle S 1, and the maps 

(A) T: q~-,(~0+~t)mod 1, �9 e l 0 ,  1]irrational (2.13) 

(B) T: r 1 (2.14) 
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In both cases the stationary measure is dl~= d~o .dto/Z. The dynamical 
system (2.13) is ergodic but not mixing (i.e., only weakly random), whereas 
(2.14) is a Bernoulli system (i.e., strongly chaotic). A similar model in 
which the values of the force are independent random variables has been 
studied in ref. 16. 

To obtain the asymptotic behavior of the energy, it is enough to look 
at a discrete sequence of times t,,=to+nr. Setting z(n)=z(t~), Eq. (2.10) 
yields 

2 
(1--cos  ogo~) ~ (n-[hl)CM(h)cos(coozh) (2.15) (]z(n)[ 2 )l' = o9--~ h= -~ 

where 

CM(h) = IM f(~0)f(Th~o) dpM(q~) (2.16) 

is the correlation function of the discrete-time dynamical system. We notice 
that z multiplies ~o o. Thus, the resonance conditions can be tuned up by 
changing the parameter r of the force. In particular, if ~oor is an integer 
multiple of 2n, the energy is always bounded, since ([z[2)~, vanishes. 

3. DECAYING CORRELATIONS 

The power spcctrum (or spectral density) of the force by the Fourier 
transform is defined as 

Proposition 3.1. 

f 
~s ,  

C(~o) = ds C(s) cos ~,~s 
c/.) 

If the correlation satisfies 

(3.1) 

and ~(~o) # 0, then 

fo~' dsslC(s)l < ~ (3.2) 

(E(t)) , ,~Dt with D =--1 ~(O)o) (3.3) 
(o  o 

ProoL It is immediate from Eq. (2.10): 

f' (E(t))t, = bounded f c t . -  ds [.3[ - -  
l 

COS r + l 
( D o  - t 

d~ C(s) cos ~OoS 

(3.4) 
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The first integral is bounded by the hypothesis (3.1) and 

tlim ~ _lt (E(t))~, = t  ~(O9o) (3.5) 

For models with piecewise constant force (2.11), Proposition 3.1 becomes 
the following. 

Proposit ion 3.2. If the dynamical system (M, T, d#M) and the 
function f e  L2(M, R, d#M) are such that the correlation function CM of 
(2.16) satisfies 

~ hlCM(h)l < ~ (3.6) 
h -= 0 

and the power spectrum 

CM(oJ) -- ~ CM(h)cos(hoJ) (3.7) 
h =  - c / j  

is such that ~M(~Ot)r then (provided that <~oZ is not an integer 
multiple of 27r) the energy grows linearly with time, 

( E(t,) ),,~ Dn (3.8) 

with 

2 (1 - c o s  ~)o t) ~t(eOoZ ) (3.9) D=to- ~ 

Remark. It would of course be interesting to know when ~(co) is 
zero. We can say something about the zeros of (~(co) for some special cases: 

(1) If C(t) decays exponentially, then ~(~o) is analytic and thus has 
at most a finite number of zeros in any finite interval. 

(2) For certain pieeewise constant forces, discussed in the next 
paragraph, which originate from a K-system, the set of zeros of the power 
spectrum is of measure zero. (27) 

Example. We consider 

T: q~-* (2q~) mod 1 (3.10) 

and 

f(~o) = ~o- �89 (3.11) 
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The correlation function is given by 

C~t(h) = ~2  -rh' (3.12) 

and the power spectrum is 

~ t  (~Oo~) = �88 [5 - 4 cos(~oor)] -1 (3.13) 

The energy thus grows linearly with time. Figure 1 shows a typical time 
evolution E(t,,). 

For this example we can make a much stronger statement in the 
form of a central limit theorem. From Eq. (2.5) we can write the time 
dependence of z(n) as 

zl(n)=Re ~" l"~'te'~176 l)e , ~ ei~176 
k = 0  

zz(n)=Im 1 (eiO~O,_l)ei~Oo, ~ ~ ei,oo,kTkt p 
k = 0  

The dispersion is asymptotically the same for the two components: 

)2 n(1 - cos Ogor ) 
(z~(n))~M- (zi(n) " ' ~ = 4 ( 5 - - - - 4 ~ )  + o(n) 

=- + o(n) 

(3.14) 

(3.15) 

30 

E ( t  n ) 

20 

0 

Fig. i. 

I I 

200 t 400 
n 

Typical energy evolution E(t,,) for the example (3.10). The straight line is the average 
(E(t.)),,. 
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T h e o r e m  3.3. The random variables z~(n)/a,,, i =  1, 2, converge in 
distribution to a standard Gaussian variable. 

The proof is given in Appendix A. 

4. N O N D E C A Y I N G  C O R R E L A T I O N S  

In this section we study a family of quasiperiodic forces with two 
incommensurate frequencies which have a dense Fourier spectrum. F(t) is 
a piecewise constant force described by 

with 

F(t) = f(Tk~0) for kr + t o ~ t  <(k  + I)z + t o (4.1) 

Top = ((p + ~) mod I, 

f e L2(S', ~, dtP), ~.~; 

The Fourier transform of F(t) is equal to 

where 

P(~o) = const. 

For this system 

c< e (0, 1 ), irrational 

d o.f(q,) = o 

(4.2) 

1 

am = fo dq~ f(~~ (4.4) 

CM(h)= ~ [ak[2e 2"ihk" (4.5) 
k = - o o  

This follows immediately from the Fourier representation (4.4): 

f(Th~o)= ~ ake 2"i('h+~')k (4.6) 
k =  - o o  

Insertion into (2.15) yields the expression 

sin2[n~(k~ - f ) ]  
(tz(n)12),, =c  L [ a k l 2 ~ - - f - ~  (4.7) 

k = r/~ 

where ? x O)oZ/2rt and c = 2 ( 1 -  cos O)oZ)/co ~. This expression shows that if 
~=  ( le )mod 1, l e Z ,  the term k =  l of the sum produces a resonance and 

am e2~"pm. 6(em - l - o)z) (4.3) 
m = -  , x J  I = , / ~  
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thus the energy will grow as n 2. If ~ (I~)mod 1, the denominators are 
never zero, but infinitely many of them are arbitrarily close to zero. We 
have thus a "small-denominator" problem. The following two theorems 
show that the asymptotic behavior in n depends strongly on the properties 
of ak for large k, or equivalently on the differentiability properties of the 
function f 

Theorem4.1 .  Let f ( ~ 0 ) = q ~ - l / 2 ;  then for all a , ~ [ 0 , 1 )  (c~ 
irrational) the energy is unbounded. 

Theorem 4.2. If the function f e  L2(S ~, dq~) is such that its Fourier 
coefficients satisfy Z lakl < ~ ,  then the energy of model (4.2) is bounded 
for all irrational ~ E (0, 1 ) and almost all f ~ [0, 1 ). 

The essential difference is that in Theorem 4.1, f has a discontinuity, 
and thus the Fourier coefficients decay only as 1/k. 

Proof of Theorem 4. 1. We remark that for fixed n the sum (4.7) is 
absolutely convergent, since ~ ]ak[2< 0o. For the present choice of f,  the 
Fourier coefficients are 

2 _ ~0, k = 0 (4.8) 
lak[ - ~ 1/(4n2k2), k r 0 

The idea of the proof is to find a sequence of times n~, i = 1, 2 ..... such that 

lira ([z(n,)[2),, = OO (4.9) 

To estimate the sum (4.7), we will use the following lemma of 
Tchebichev~2~'~9): 

i . e m m a  4.3. For all ~, f E ~, ~ irrational, there exists a sequence of 
positive integers k ,  v = 1, 2 ..... such that 

3 
( k , , a -  ?) mod 1 < - -  (4.10) 

k v  

Using this subsequence {k,,} and the fact that all terms in the sum (4.7) are 
positive, we have 

e ~ sinZ[nrt(kv~-'f)] 
(]z(n)]2)#>~xz , = ,  k ~ ~ ~ - - - ~ ]  (4.11} 

The denominators can be estimated using (4.10): 

4rc2k~sinZ[~(k,,ot-~)] ~<4rt4k~[(kva- 17) mod l ] 2 < c l  =36n  4 (4.12) 
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Thus 

(Iz(n)l z ) .  > c, ~ sin2[nr~(kv ~t - f ) ]  (4.13) 
v = l  

We will show now that for any integer m there is an n,, such that 

(Iz(n,,,)t 2 ),, > �89 m (4.14) 

Since the sequence 0,,= ( k v ~ t - f ) m o d l  tends to zero, we can extract a 
subsequence 01, l =  !, 2 ..... such that 

01 < �88 (4.15) 

Or+ a < �88 (4.16) 

and we have, fixing an arbitrary m, 

(Iz(n)12), > cl sin2[nn01] + sin2[nrcOt] (4.17) 
I I I = m +  I 

We now use the following lemma. 

I . emma  4.4. For each m there is a value n,, such that each of the 
first m terms satisfies 

�88 (nm0/) mod I <3  (I= 1 ..... m) (4.18) 

This lemma implies 

• sin2[rtnmOt] > �89 (4.19) 
/ = 1  

and therefore by (4.17) the energy is unbounded. 

Proof of l.emma 4.4. We define l~ ..... tr, recursively as follows: l, is 
the smallest integer such that 

1~ >/I,_ i and 

and 

�88 m ,~+,)mod 1 < 4 (4.20) 

1 ~<110,,< 3 (4.21) 

We will show that the choice n,,, =lm satisfies the required property (5.18). 
We define the quantity Rs by 

lmOm+l_s=lsOm+l_sWRs, S = I  ..... m (4.22) 
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It is enough to show that 

0~Rs<�88 

since by definition 

�88 ,~)mod 1 <�88 s < l -Jc  ( �88 m + l  

(4.23) 

We use the following relations: 

m 
Rs=(Im- ls)Om+l_s= ~ ( l j - - ( i_ l )Om+l_ s (4.24) 

j=s+l 

1 (b-b_,)Om.,_,<.(b-b_,)Om+,_j4j_,; for j > s  (4.25) 

( l j-- l j_ l)Om+|_j• �89 ( 4 . 2 6 )  

Relation (4.25) is a consequence of (4.16). Relation (4.26) states the fact 
that, if l/_jO,,+~ j is not in the desired interval [ r i+  1/4, rj+3/4], the 
distance to it is at most 1/2 and thus will be reached in less than 
(20,, ~ j j) ~ supplementary steps. 

We obtain thus the result 

O~<R~<~ 4 - 7 - < -  (4.27) 
i ~- ~ + t ~ 4 

which completes the proof of the lemma. 

Proof of Theorem 4.2. 

(Iz,,12),, = c Y 
k =  oo 

k ~  --oo 

We start by writing 

sin 2 [nr~(kc~ - / ) ]  

1 
lakl2 sin2[r~(k~ - f ) ]  

We then separate the sum into three parts: 

= y + Y + Y ,  
k s  -.oo kell k~12 k613 

where 

I, = {k[ - �89 (kc~) rood 1 -'g~< �89 

12= {k[ - 1  ~<(k~) rood 1 - 'f~< - �89 

13= {kl �89 mod 1 - f ~ <  ! } 

(4.28) 

(4.29) 

(4.30) 
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Adapting the inequality 

Isin OI ~>2101 if O e [ -  2 , 2 ]  (4.31) 

to these three sets, we obtain: 

(i) If k ~ I i :  

Isin[rc(k~- 2)1 = Isin{rt[(k~) mod I - 2] }1 > 2 I(k~) mod I - ft (4.32) 

(ii) If ke I2 :  

[s in[n(k~-2)]1 = I-sin{n[(kct)  mod 1 - 2 +  1]}l > 2[(k~) rood 1 - f +  tl 

(4.33) 

(iii) If k~13: 

Isin[n(kct-2)]1 = I - s in{n[ (ka )  mod 1 - f - 1 ] } 1  > 2j(k~t) rood ! - f - ! 1  

(4.34) 

Applying these estimates, we can write 

c ~ la, I 2 
2 (4.35) 

with 

( (k~ )mod l  if k e l ,  

s k = ~ ( k c t ) m o d l + l  if ke12 

[ . ( k ~ ) m o d l - I  if kE13 

(4.36) 

This expression is bounded as a consequence of the following iemma due 
to Howland, which completes the proof. 

L e m m a .  (3~ Let {sk}, - o o  < k < ~ ,  be an arbitrary sequence on 
some finite interval J c  R. If Zk~__ _~ lak[ < oo, then 

k= ~, Isk-212< ~ 

for almost all f e J. 
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5. Q U A N T U M  M E C H A N I C A L  S Y S T E M S  

As already mentioned, there is a close relation between the classical 
and quantum evolution of harmonic oscillators. The quantum evolution 
can be entirely deduced from the classical motion in phase space, ca' 16) The 
results for the energy growth are in fact identical for the two systems. This 
can be readily seen by stating the quantum problem in terms of the Wigner 
function. The time evolution of states q~ e L2(R, dx) is determined by the 
Schr6dinger equation 

0 
i -~ ~t = H(t)~b, =- [ H  o - xF(t)] ~9, (5.1) 

(we set h = 1). The state if, at time t can be expressed in terms of the 
Wigner distribution P,. defined as (31) 

Pw(q, P, t) =1 f ~  dy ~b*(q + y)~k,(q- y)exp[2inyp] (5.2) 

Pw is normalized, but not necessarily positive. For the forced harmonic 
oscillator the time evolution of P,, is determined by the equation ~3~) 

0 d 0 
P,, = - P  7-- P,. + (~oZq - F) -z- Pw 

0t aq ap 
(5.3) 

which coincides with the classical Liouville equation. The solution can thus 
be expressed as 

P,(q, p, t) = Pw(q k. ,, p ,, O) =- P,,(?I, if, O) (5.4) 

where ~, ,6 are the initial conditions that would evolve into q, p at time t. 
We denote this by 

q=q,(fl, P), p = p,(~, ,0) (5.5) 

We consider initial states ~'o with finite energy expectation 
(~bo, H~,o) < ~ .  Its time evolution can then be expressed as 

+_~ q2) Pw(q, P, t) 

d -I-1 2 0902 
(5.6/ 

822/62/3-4-20 
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When averaged over the forcing process, we obtain 

EQ(r t) =-- ((r Hr 
/ 1 2 ~ 

= f dq d# .-~ p,(q, /~)+ V q~(~' /~)).r 
\ 

Pw( gl, O) 

= fdq @ E"(q, #; t) Pw(q, P, 0) (5.7) 

and inserting (2.9) 

EQ(r t) = EO(r 0)+ (]z(t)[ z ) ,  (5.8) 

Thus, the averaged energy in the quantum model has the same growth 
properties as the classical one, determined by (Iz(t)12),. 

We now turn to the analysis of the spectrum of the Floquet operator 
in the case of periodic time dependence. We verify explicitly that the 
spectrum is pure point in the absence of a resonance and absolutely 
continuous in the presence of one. The Floquet operator U(T, 0) is defined 
in ~ = L2(R, dx) by the propagator of (5.1) taken over one period T. Its 
spectrum is directly related to the spectrum of the "quasi-energy" operator 

0 
K= - i~t+ H(t) (5.9) 

in the space L2(S~r, dt/T)| dx), where S~-is a circle of length T. The 
eigenvalues and eigenvectors of the two operators are related by 

K ,  = 20, ,(x, t)~L,(, ,  dx)| 2 (S~, d.~) 

U(T, 0)q~ = e-"~r~b; ~b(x) e Lz(R, dx) (5.10) 

O(x, t) = eiatU(t, O) ~(x) 

The quasi-energy operator was introduced in refs. 32 and l0 and has since 
proven to be a useful tool to treat time-dependent problems. In refs. t I and 
13 it has been shown under some conditions that the spectrum of the 
Floquet operator characterizes the dynamics of the states r (RAGE 
theorem(33)): 

(A) r belongs to the subspace of point spectrum of U(T, 0) if and 
only if Vg > 0, 3R > 0 such that 

inf[  dx [U(t,s)r iir 2 (5.11) 
t "qxl < R 
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(B) ~b belongs to the subspace of continuous spectrum of U(T, 0) if 
and only if VR > 0 

lim ~ f~ dt ff dx IU(t, s)r 2 =0  (5.12) 

Furthermore, we will show that the energy remains bounded if the spec- 
trum is pure point, and it grows unbounded if the spectrum is continuous. 
To make this statement more precise, we introduce the following sub- 
spaces: Let ~pp and ~ be the pure point and continuous spectrum 
subspaces, respectively, corresponding to the Floquet operator U(T, 0). 
The subspace ~bo of state trajectories with bounded energy is defined as 

~ b , = { ~ ]  lim sup[lF(Ho>E) U(t,O)~pl[=O } (5.13) 
E ~  t~>0 

where F(Ho>E) is the spectral projection on the eigenspace of Ho 
corresponding to energies larger than E. The subspace of states with 
precompact trajectories is defined as 

.~.p~={~.Cglclosureof{U(t,O)~,t>~O}iscompact} (5.14) 

i.e., the trajectories in . ~  evolve in a space of finite dimension except for 
a small correction. More precisely, given ~ ~ ,gp~, there is for any e. > 0 a 
decomposition 

~,(t) = 4't(Y) + v(t)  (5.15) 

such that for all t >/0, 0r(t) is a finite-dimensional subspace and IIv(t)ll < ~. 

T h e o r e m  5.1. Consider the time-dependent Hamiltonian 

H(t)= Ho + lT'(x, t); (/(x, t + T)= lT"(x, t) (5.16) 

such that the spectrum of the unperturbed H o is discrete and bounded from 
below (e.g., having a confining potential, or defined on a compact 
manifold) and such that the propagator U(t,s) exists as a strongly 
continuous family of unitary operators. Then 

,~p = ~ o ;  . ~  = gb~ (5.17) 

We remark that ~k~.,~,ebe does not imply that the expectation value 
(~(t),Hod/(t)) stays bounded: although the components of higher 
energies decrease to zero, the decay can be slow enough to give a diverging 
expectation. 
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For the proof we use the following two theorems due to V. Enss and 
K. Veselic: 

T h e o r e m  5.2. ()3) Let C be any compact operator and ~,e,~,.; then 
there is a nonnegative function .f(r) such that 

with 

1T fo dt liEU(t, 01~11 ~f(~)11~ Ii (5.18) 

This implies that 

and 

sup IIF(Ho> E) U(t, 0)011 >/[1 - f ( z ) ]  (5.22) 
t e  [O,z] 

sup 
t e  [0, c~ ) 

Hence 

T h e o r e m  5.3. (13) , ~ , p  = ~ 

Proof of Theorem 5. I. (i) We start by proving .~(>e c ,~p~: Consider 
a ~k e 0,~. Applying Theorem 5.2 with C = F(Ho <<. E) to the first term in the 
identity 

we obtain 

;o 1 act )IF(Ho <~ E) U(t, 0)OH + [IF(Ho > E) U(t, O)Olt 1 = I1~'11 = r 

-~ dt IIF(Ho > E) U(t, 0)~kll ~ I-I - . / ( z ) ]  

IIF(Ho > E) U(t, 0)O)l = 1 (for any E) (5.23) 

lim sup IIF(Ho>E) U(t, 0)~kjj = 1 (5.24) 
E ~ c ~  t~>0 

i.e., states of the continuous spectrum subspace have trajectories with 
unbounded energy. 

(ii) The inclusion in the other direction a~ppC~e follows from 
Theorem 5.3 together with ~ r  ~be, which can be shown as follows: 

(5.20) 

(5.21) 

lira f(x)  = 0 (5.19) 
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Given ~ e ~,~p~ and e > 0, the precompactness implies that there is a decom- 
position 

~,(t) = OAt) + v(t) (5.25) 

t ~ O ,  tpy(t) is in a finite-dimensional subspace and such that for all 
IIv(t)ll < e. Then 

sup fiE(He > E) ~k(t)ll ~< sup IlF(no > E) q/f(t)lf + sup IlF(n0 > E) v(t)ll 
t~>O t~>O t>~O 

(5.26) 

The first term is finite dimensional and thus tends to zero when E ~ ~ and 
the second one is bounded by ~, and thus 

lim sup I fF(Ho>E)~( t ) [ I  <~, V~>0 (5.27) 
E ~ c ~  t~>O 

which completes the proof. 
For periodic Hamiltonians that are quadratic polynomials in p and q, 

Hagedorn et alJ 16) have shown that the spectrum is either pure point or 
transient absolutely continuous. They also classified the models in relation 
with the classical motion. Their method applied to the present model (5.1) 
allows one to calculate the spectrum and eigenfunctions explicitly: The 
propagator can be expressed a s  ~j3) 

U ( t , O ) = e  i'~mei'~21')~-e i'~"'lPe irr ( 5 . 2 8 )  

where 15 = - i  8/r and 

~j(t) = d~' F(s) sin ")o(r - s )  

a2(t ) = ds F(s) cos ~oo(t-s) (5.29) 
) 

(This is easily verified by applying it on a basis of coherent states of He.) 
We assume that F(t + T) = F(t), which defines the frequency ~o = 2rt/T. 

We have to distinguish two cases. 

I. Resonance: 8 o = ko), k E Z. In this case the operator e -iH0r reduces 
to multiplication with a constant. This is easily seen by applying to to the 
basis {r of eigenfunctions of He: 

e i t l ~ 1 7 6  inkq9 n (5.30) 
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Thus 

U ( T ,  O)=e  i~(7"1 i~k e+i , ,2 l r~  e i~l'r>,~ 

which has transient absolutely continuous spectrum. ~ ~'J 

II. N o n r e s o n a n c e :  o9 o -r kog, k e Z .  

We will use the following result. 

Lemma. If ogotg:k2x, k e Z ,  then for any 
7, 6, 0 e R such that 

e~r ~ e  itt~ = e~~ itax - ~ ) e  -ill~ i(6x 7fi) 

with 

B u n i m o v i c h  e t  aL 

(5.31) 

~ , f l e R  there are 

(5.32) 

where 

( p , / q t o 9 o ) = R , (  qo \po/O 0] 
(5.36) 

and 6, is a phase. We remark that the condition of nonresonance is used 
only for the existence of the inverse of (1 - R , ) .  

The Floquet operator U ( T , O )  is thus unitarily equivalent (up to a 
phase) to e - m , T  and has pure point spectrum with eigenvalues 

e.-.iA, T = e - i , o o ( n + t / 2 1 T .  iOV, n=O, 1,2 .... (5.37) 

where 0 is a constant. 
The eigenfunctions r can be expressed in terms of the eigenfunctions 

cp. of H o : 

r  = e i(~x - ~t~) r  = ce i6x ~ , ( x  - 7 ) (5.38) 

R, ( ; )  ,533, 

where R, is the rotation matrix (2.4). 

P r o o L  It follows immediately, from applying (5.32) to a basis of 
coherent states of the form 

q~ = ei~:m e ,,,o(x qo)2/2 (5.34) 

and using the fact that 

e - iUo t tp = ei~; ei~p' e - ,oo( q, j2/2 ( 5.35 ) 
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where 

%'~176 
The eigenvalues 2 and eigenfunctions 
- i  O/&t + H(t)  can then be expressed as 

2n, ~ = tom + Ooo(n + �89 + O; 

~. , , . (x ,  t) = e~"'~ t) 

where 

= ( l -  RT)-' { ~,(r) ) 
\ a 2 ( T ) / o o /  

~n,m of the 

n = 0, 1, 2,...; 

generator K =  

m ~ Z  
(5.39) 

r  t) =_ e '~"' U(t ,  0) ~.(x) (5.40) 

This example illustrates the following property, which is expected to be 
quite general: 

(i) If ~o and co o are commensurate (COo = (k/h)~,  h #  1, k, h ~ _ ,  
relatively prime), then there is a finite number of eigenvalues 2 
and they have infinite degeneracy. 

(ii) If ~o and ~oo are not commensurate, the point spectrum is non- 
degenerate and dense. 

This is the origin of small-denominator problems in the perturbation 
analysis of such operators.~ ~ 7._~o~ 

APPENDIX 

Proof  o f  Theorem 3.3. We show that the characteristic function 
satisfies 

~b,,(2)- (ei~Z'~"~/~"),_~o,Z ~2/2, for i = 1 , 2  (A.1) 

We have a sum of weakly dependent random variables, but multiplied with 
nonstationary (i.e., k-dependent) coefficients. We cannot therefore apply 
the standard theorems. But by a suitable change of variables we can 
transform the problem into a sum independent random variables with non- 
stationary coefficients, which can be easily estimated. We represent the 
points q~ ~ [0, 1 ] by their binary expansion 

ap 
~o = 2--- 7, ape {0, 1 } (A.2) 

p =  I 



814 Bunimovich et  aL 

The uniform measure dq~ is equivalent to the Bernoulli measure on the 
sequences {ap} (independent equal probability 1/2 for 0 and 1 at each 
position). 

The map T acts as a shift and we can write 

z,(n)=Re[co~, k=o p=l 2" ) 
(A.3) 

{ l (e~,,,,. ) e,,,,oto ~ at,+k~ zz(n)=Im ~ -1 ~ e ''~ 
k=0 ,= I 2r J 

Making the change of variables / = p + k, p' = p, 

rt - 1 ~ o~ p ' + n I n I l ~ l 

2 2 = 2 2 = 2 2 + 2 2 (A.4) 
k = O  p = l  p ' = l  I = p '  / = 1  p ' ~ l  I = n  p '  I n ~ i  

we can perform the sums over p' and obtain 

z~(n) = ~ ,,1~/,,," ,,m i =  l, 2 (A.5) 
l = 1  

with 
g~tj Re{ht,. }" -~2) = lm{ht,.} (A.6) 

I ,n  = ~ g l ,  n 

=~(2e~,,,o~ i ) , j  2 e"'"'--~ for l<~l<~n-t (A.7a) 

I. (2e ''''~- l)eo~ \~7 7, }, for I>~n (A.7b) 

We will only need the following properties of ,,(i~. 151,n �9 

(a) ,,~o is bounded in/ ,  n 
6 1 , n  

""~ <Co (A.8) (b) ~,/,, 
I = n  

n - - I  

(c) ~ ~/,,"~~ < Co' (A.9) 
/ = 1  

1 n-1 
(d) lim 7-25_2 ~ t,,~0~2_ 1 (A.10) 

n ~  40" n 1 = 1  t & l , n !  - -  

where Co, c~ are constants, independent of n. The property (A.8) follows 
from the fact that if />/n, then for large n 

1 
g(O ,.~ const. �9 2t_-- ~ (A.11 ) 
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Property (A.9) follows immediately from (A.7a), and (A.10) is a 
consequence of 

1 co  l n - - I  
f f 2 n " ~ ( l z ' i ) 1 2 ) = 4 l E = ,  (gSf ) )2"~4  /=IE (gSfn)) 2 (A .12)  

We can now evaluate the characteristic function 

qk,(2)=(exp(i-- Z a,g~'~ = fi  exp(i ~--~-a,g~i)~]~ 
\ \ ~ l=1 \ O'n ' / /  

( (A.,3) 
& 1 I �9 (o 

-- =,ll ~ + ~ e x p  o,, / 

We take the logarithm and separate the terms according to (A.7), 

In ~b,(2)="Z' In[1 + �89 1)] + ~. ln[l+�89 (A.14) 
l= 1 I=n 

We can easily estimate the second sum using the property (A.8) and the 
inequality Iln(l + Y)I <c~ lYl; c~ constant (for n large): 

" '  ) ]  

~n  , (0 a 
J ( e  '&t , . /  " - -  l In[1 + 

/ 

I=n 

--~---- ~ .(i) ~c2 + 0 (A. 15) 0"n ,5l n tl ~ <X~ /=n %/ffH 

The first sum of (A.14) can be estimated as follows: we define 

Yi - ~" "~'"~/" ~(~ . , , -  1) (A.16) 

and use the inequality 

to write 

with 

[ln(l + y ) -  y+ �89 y2/ < c3ly[ 3 

n I 

" E ' I n [ I + Y , ] =  Z [y,- �89 
/=1 I=1 

(A.17) 

(A.18) 

n I 

[R,,J ~<c3 ~ [y,[3 (A.19) 
l= l  
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Further ,  since g / i s  bounded,  

and thus 

2 
2 ,,~i~ ~<c4 (A.20) lYtl <~-- ~1,,, 

n 
IR,I ~< c523 n3/2 . . . .  ,* 0 (A.21) 

For  the first term in (A.18) we use 

Yt - - � 8 9  = i2g~'],/a,, , ~2 z (~;,.,,,.,,, ~2a ,, +o(n}  (A.22) 

which together  with propert ies (A.9) and (A.10) of  gl~], gives 

tt  I 

lim ~ [ y t _  l 2 �89 i Y l ]  = - (A.23) 
n ~ c ~ o  / = 1  

Thus, putt ing the est imates together, we get 

lim In ~b,,(2) = - �89 

which completes  the proof  of the central limit theorem. | 
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